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ABSTRACT 

The Chinese Bayan Obo deposit is a world-class rare earth element (REE) deposit with considerable 
niobium (Nb) and iron (Fe) resources. A complete genetic understanding on all metals is fundamental for 
establishing genetic models at Bayan Obo. With extensive research being focused on REE enrichment, the 
timing and controls of Nb enrichment remain unresolved at Bayan Obo, which is mainly due to the 
challenges in dating, i.e. multistage thermal events, fine-grained minerals with complex textures and the rare 
occurrence of uranium-enriched minerals with mature dating methods. Based on robust geological and 
petrographic frameworks, here we conducted ion probe uranium-lead (U-Pb) dating of ferrocolumbite to 
unravel the timing, hence the genesis of Nb mineralization. Three types of hydrothermal 
ferrocolumbites—key Nb-bearing minerals—are identified based on their textures and mineral 
assemblages. They yield U-Pb ages of 1312 ± 47 Ma ( n = 99), 438 ± 7 Ma ( n = 93), and 268 ± 5 Ma 
( n = 19), respectively. In line with deposit geology, we tentatively link the first, second and third stage Nb 
mineralization to Mesoproterozoic carbonatite magmatism, ubiquitous early Paleozoic hydrothermal 
activity, and Permian granitic magmatism, respectively. While quantifying the contribution of metal 
endowment from each stage requires further investigation, our new dates highlight that multi-stage 
mineralization is critical for Nb enrichment at Bayan Obo, which may also have implications for the 
enrichment mechanism of Nb in REE deposits in general. 
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a ∼0.4 Ga hydrothermal deposit related to Paleo- 
Asian Oceanic plate subduction [4 ,5 ]. In contrast, 
samarium-neodymium (Sm-Nd) isochron dating of 
REE minerals predominately defines an errorchron 
at ∼1.3 Ga [6 ]. In line with ∼1.3 Ga zircon Th-Pb 
dates from carbonatite dykes [7 ,8 ], a Mesoprotero- 
zoic carbonatite origin for Bayan Obo was proposed. 
Further Th-Pb dating of monazite and bastnäsite us- 
ing LA-ICP-MS yield disparate dates ranging from 

∼1.2 Ga to 0.26 Ga, with two peaks at ∼0.4 Ga and 
∼0.27 Ga [9 ]. These disparate dates either have been 
used to argue for a protracted REE mineralization 
over ∼1 bi l lion years [10 ], or remobilizing existing 
∼1.3 Ga mineralization at ∼0.4 Ga and ∼0.27 Ga 
[9 ]. 

Existing dates of Nb mineralization are scarce, 
based on the occurrence of pyrochlore [(Ca, 
Na)2 Nb2 O6 (OH, F)] from skarn in contact with 
Permian granites [5 ], and a Th-Pb isochron date at 
∼273 Ma ( n = 7;) for aeschynites [Ce(Ti, Nb)2 O6 ] 
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NTRODUCTION 

arbonatite-related mineralization is the world’s
rimary source of rare earth element (REE) and
iobium (Nb), with the overall metal endowment
eing controlled by a few deposits. For example,
he Araxá and Catalão-II (Brazil) and St. Hon-
ré (Canada) deposits account for ∼98% of annual
lobal Nb production, while the Bayan Obo (China)
eposit accounts for ∼40% of annual global REE
roduction [1 ]. Despite their economic importance
nd extensive studies, processes controlling metal
nrichment in these giant systems remain contro-
ersial. The Bayan Obo deposit, renowned for its
ast REE resources and substantial Nb and iron (Fe)
eserves, is a classic example for this puzzle. 
Despite 70 years of study (e.g. [2 ,3 ]), the tim-

ng of mineralization at Bayan Obo remains de-
ated. Based on thorium-lead (Th-Pb) isochron
ating of monazite and bastnäsite, the two prin-

iple REE minerals, Bayan Obo was proposed as 
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Figure 1. (A) Geological map of the Bayan Obo deposit and surrounding area. (B) Simplified geological map of the West 
orebody. The green star shows the locations of studied samples. The geological map was modified after [48 ,49 ]. 
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11 ], a Permian stage Nb mineralization was sug-
ested. In contrast, aeschynites in vein-type ores
ielded disparate results from 658 ± 36 Ma (Sm-Nd
sochron, n = 5; [12 ]) to 438 ± 25 Ma (Th-Pb
sochron, n = 4; [5 ]), to 290 ± 15 Ma (Rb-Sr
sochron, n = 4; [12 ]). Variability in these dates
rom the same ore type may result from isotopic
ystem disturbance [12 ]. 
Deciphering the genesis of Bayan Obo relies

n faithful interpretation of radiometric dates. The
EE- and Th-rich nature of minerals like monazite
nd bastnäsite has prompted the widespread use
f Sm-Nd and Th-Pb dating. However, the limited
ange of Sm/Nd ratios poses challenges for accurate
nd precise isochron dating, evident in substantial
rrors tied to errorchron [13 ]. Meanwhile, Th-Pb
ating has yielded dates ranging from ∼1.2 to
.26 Ga [9 ]. Given the common occurrence of
alena and the inability of common lead corrections
sing LA-ICP-MS, the variations in Th-Pb dating
ould be partly explained by varying proportions
f common lead. Additionally, this variability may
lso be linked to multiple thermal events, which
aused the formation of multistage minerals and
pen system behavior of the Th-Pb system [14 ]. 
High-quality radiometric dating is essential to ad-

ance our understanding on the genesis of Bayan
Page 2 of 9
Obo. Here we approach this challenge from Nb 
mineralization and focus on dating ferrocolumbite 
[(Fe, Mn) (Nb, Ti, Ta)2 O6 ]. As a major Nb-bearing 
mineral at Bayan Obo [15 ,16 ], ferrocolumbite con- 
stitutes ∼90% Nb in the dolomite host rock [17 ]. 
They incorporate significant amounts of U (up to 
hundreds of ppm), and leverage the dual U decay sys- 
tem (238 U-206 Pb and 235 U-207 Pb) as a powerful tool 
for dating complex geological systems and evaluating 
closed-system behavior. 

Here we conducted a high-spatial-resolution 
( ∼10 × 15 μm2 ) secondary ion mass spectroscopy 
(SIMS) ferrocolumbite U-Pb dating approach using 
a matrix-effect correction strategy [18 ]. We success- 
fully obtained the first set of U-Pb ages for Nb min-
eralization at Bayan Obo, which were used to yield 
implications for deposit genesis. 

DEPOSIT GEOLOGY AND SAMPLES 

The Bayan Obo deposit is hosted primarily by a 
dolomitic unit within the Mesoproterozoic Bayan 
Obo Group (H1–H9 units; Fig. 1 A; [5 ]). The 
dolomitic unit was initially referred as ‘H8 dolomite’ 
[5 ], which is now considered to be carbonatite 
[19 –23 ]. Three crucial tectono-thermal events 
influenced the Bayan Obo deposit, including 
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esoproterozoic carbonatite magmatism, early
aleozoic hydrothermal alteration event, and Per-
ian granitic magmatism. Abundant carbonatite
ykes adjacent to the deposit [8 ,24 ], of which a
ew have been dated at ∼1.4–1.2 Ga by zircon U-
h-Pb dating [7 ,8 ], pointing to a Mesoproterozoic
arbonatite magmatism. Undeformed to weakly
eformed veinlets are commonly observed cutting
cross both the orebody and the H8 dolomite [25 ].
hese veinlets exhibit diverse mineral compositions,
ncompassing REE- and Nb-bearing minerals, along
ith gangue minerals like fluorite, aegirine, alkaline
mphibole, mica, pyrite, baryte, and molybdenite.
arious dating results, including Sm-Nd, Rb-Sr,
e-Os isochron ages and Th-Pb dates, suggest that
hese veins were formed at ∼0.4–0.5 Ga [21 ,25 –27 ].
xtensive Permian granites border the deposit to the
outh and east, leading to extensive hydrothermal
etasomatism at the contact zone between granites
nd H8 dolomite in the east mining area—the so
alled East Contact Zone [5 ,28 ,29 ]. 
The Bayan Obo deposit comprises West, Main,

nd East orebodies (Fig. 1 A), with Nb mineraliza-
ion being particularly enriched in the West orebody
nd East Contact Zone [5 ]. The Main and East
rebody each consists of a single lenticular-shaped
rebody, whereas the West orebody is composed of
everal small orebodies (Fig. 1 B, [2 ,5 ]). Within this
eposit, monazite and REE fluorocarbonates are
he major host of REE, while Fe resource is mainly
ound in magnetite and hematite, and Nb resource
s primarily hosted by aeschynite, ferrocolumbite,
ergusonite, pyrochlore, i lmenoruti le, and baotite
15 ]. Through extensive field observations, repre-
entative samples were collected from outcrops of
he open pit and dri l l cores. Based on the mineral
ccurrences of ferrocolumbites and their parage-
etic mineral association of hydrothermal alteration
n the host dolomite, three types of ferrocolumbite
ere identified. 
All the three types of ferrocolumbite are hosted in

olomitic rocks, which were named dolomitic-type
res [11 ], but their alteration degrees, petrogra-
hy textures, and mineral assemblages are distinct.
ype Ⅰ ferrocolumbite is characterized by intense
etasomatism. The original dolomite protolith

 ∼40 vol.%) experienced hydrothermal overprint
ith veins comprising of apatite ( ∼25 vol.%), chlo-
ite ( ∼10 vol.%), biotite ( ∼8 vol.%), and monazite
 ∼10 vol.%, Fig. 2 A–C). Type Ⅰ ferrocolumbite
 ∼5 vol.%, 10–400 μm) mostly occurs as subhedral
o anhedral grains within the interstices of dolomite
Fig. 2 A). Many ferrocolumbite grains have been
liced into incomplete remnants with curved ser-
ated edges, and contain numerous fractures and
Page 3 of 9
inclusions of pyrite, chlorite, apatite, and monazite 
(Fig. 2 B and C), while some grains sti l l retain their
original columnar shapes (Fig. 2 C). Type Ⅱ ferro-
columbite ( ∼3 vol.%, 20–500 μm) is anhedral to 
subhedral and is distinctly characterized by associa- 
tion with mineral assemblages rich in Sr, Ba, and al-
kali (Fig. 2 E and F). Their host protolith ( ∼55 vol.%,
dolomite and calcite) is enriched in Sr and Ba, as
evidenced by Sr- and Ba-rich minerals ( ∼10 vol.%,
norsethite, strontianite, and barytocalcite). Their 
common association with alkaline-rich minerals 
( ∼15 vol.%, biotite and riebeckite, Fig. 2 D–F), 
and hosting abundant mineral inclusions (biotite, 
riebeckite, baryte, and monazite, Fig. 2 E and F) 
point their origin to alkaline fluids. Type Ⅲ ferro-
columbite is featured by intergrowth with aeschynite 
within biotite-apatite veins that weakly altered 
the host dolomite. The coarse-grained dolomite 
( ∼70 vol.%) has occasionally been cut by biotite- 
apatite veins ( ∼15 vol.%, Fig. 2 G–I). Type Ⅲ fer-
rocolumbite ( ∼2 vol.%, 10–200 μm) is distributed 
within these veins and intimately associated with 
aeschynite. It shows irregular shapes and contains in- 
clusions of biotite, apatite, and pyrite (Fig. 2 H and I). 

Representative thin sections were selected for fur- 
ther analysis (e.g. SEM and EPMA), with the tar- 
geted grains being dri l led to make mounts for SIMS
U-Pb dating. Detailed deposit geology, sample loca- 
tion, methods, and data results are presented in the 
Supplementary Data. 

RESULTS 

All ferrocolumbites are Nb-enriched (Nb2 O5 ≥ 76 
wt%) and Ta-deficient (Ta2 O5 ≤ 0.1 wt%; Set S1). 
Type Ⅰ and Ⅲ ferrocolumbites have comparable 
chemical compositions, with overlapping ranges of 
MnO contents (2.37 ± 1.00 wt%), MgO contents 
(1.41 ± 0.54 wt%), and TiO2 contents (1.65 ± 0.91 
wt%), while type Ⅱ ferrocolumbite has higher 
MnO contents (4.72 ± 2.57 wt%), and lower MgO 

contents (0.57 ± 0.09 wt%) and TiO2 contents 
(0.98 ± 0.76 wt%; Fig. 3 , Set S1). For type Ⅰ fer-
rocolumbite, 99 analyses were conducted on 71 
grains. Their U concentrations are 29–550 ppm, 
with apparent 207 Pb/206 Pb dates ranging from 810 to 
1366 Ma (Fig. 4 A). After 204 Pb-based common Pb 
correction, the 99 analyses defined an upper inter- 
cept age of 1312 ± 47 Ma (MSWD = 0.62, Fig. 4 B)
on the Wetheri l l Concordia plot. For type Ⅱ ferro-
columbite, 93 analyses were performed on 30 grains. 
Their U contents are very low (0.04–9.50 ppm). The 
93 analyses defined a lower intercept age of 438 ±
7 Ma (MSWD = 1.2) on the Tera-Wasserburg plot 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae063#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae063#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae063#supplementary-data
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Figure 2. TEMSCAN TIMA mineral mapping and backscattered electron images of ferrocolumbite samples from the West 
orebody, Bayan Obo. (A–C) Images of the sample with type I ferrocolumbite. The ferrocolumbite coexists with and includes 
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Fig. 4 C). The analyses of grains with U contents
igher than 1 ppm show smaller uncertainties of
06 Pb/238 U ages than those with U contents lower
han 1 ppm (Fig. 4 D). Twenty-nine analyses with
 > 1 ppm yield a weighted average 206 Pb/238 U
ge of 437 ± 7 Ma (MSWD = 0.56, Fig. 4 D)
fter common lead correction. For type Ⅲ ferro-
Page 4 of 9
columbite, 19 analyses on 12 grains show U contents 
of 1.5–60 ppm. A lower intercept age of 268 ±
5 Ma (MSWD = 0.77; Fig. 4 E) was established on
the Tera-Wasserburg plot, while a weighted average 
206 Pb/238 U age of 270 ± 4 Ma (MSWD = 0.60, 
Fig. 4 F) after common lead correction was 
determined. 
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ISCUSSION 

hree-stage Nb mineralization at Bayan 

bo 

ating ore minerals directly is one of the best ap-
roaches to define the timing of mineralization (e.g.
30 ,31 ]), as this can place mineralizing mechanisms
nder a robust geological framework. Using SIMS U-
b dating with a robust matrix-effect correction ap-
roach, we have successfully provided accurate U-Pb
ges of ferrocolumbite, hence the age of Nb mineral-
zation at Bayan Obo. In comparison to Th-Pb and
m-Nd isochron ages, the dual decay system of U-Pb
rovides information on open system behaviors and
ncorporation of common lead [32 ], which is funda-
ental for robust interpretation of radiometric dates.
or type Ⅰ ferrocolumbite, although many analyses
xhibit significant uncertainties arising from low U
nd high levels of common lead contents, it clearly
efines an array on the Wetheri l l Concordia plot
Fig. 4 B) which is a testament to gradual lead loss
Fig. 4 A). The oldest 207 Pb/206 Pb age (1366 ± 106
a), which experienced the least Pb loss, provides

he closest estimate to the true age, and is consis-
ent with the upper intercept age of 1312 ± 47 Ma
ithin uncertainties (Fig. 4 B). Therefore, the first-
tage Nb mineralization was formed at ∼1.3 Ga.
he exact timing of isotopic disturbances cannot be
recisely defined due to considerable uncertainties
n the lower intercept, but it is likely related to the
econd and third stage of Nb mineralization as dis-
ussed below. 
For type Ⅱ ferrocolumbite, despite the fact that

ates of low-U samples yield dates with significant
Page 5 of 9
uncertainties, high-U samples are more precise and 
are less impacted by common lead. High U samples 
give a weighted average 206 Pb/238 U age of 437 ± 7 
Ma ( n = 29, Fig. 4 D), which is consistent with the
lower intercept age of 438 ± 7 Ma defined by all
spots (both high-U and low-U, n = 93, Fig. 4 C). This
0.44 Ga age is supported by a Th-Pb isochron age
of 438 ± 25 Ma [5 ] for aeschynite from the vein-
type ores that cut through the orebodies and H8 
dolomite. 

For type Ⅲ ferrocolumbite, the lower intercept 
age of 268 ± 5 Ma is in good agreement with the
weighted average 206 Pb/238 U age of 270 ± 4 Ma 
(Fig. 2 E and F), which clearly suggests a third stage of
Nb mineralization at ∼0.27 Ga. This is supported by 
an aeschynite Th-Pb isochron age of ∼273 Ma [2 ]. 

Genesis of Nb mineralization at Bayan 

Obo 

Petrographic examination reveals that the ∼1.3 Ga 
ferrocolumbites are closely associated with hy- 
drothermal minerals [33 ] such as apatite, biotite, 
chlorite, monazite, pyrite, and minor molybdenite 
(Fig. 2 A–C). Hence we tentatively link the ∼1.3 Ga
ferrocolumbites to hydrothermal fluids. We empha- 
size that their coexistence with hydrothermal min- 
erals can also be explained by post-formation dis- 
turbance, as evidenced by their dissolution texture 
(Fig. 2 B, C) and lead-loss nature (Fig. 4 A). A Meso-
proterozoic carbonatite magma intrusion is further 
supported by the carbonatite dykes near the min- 
ing area [8 ], which has been proposed as a major
driver for the extensive fluorine and fenite alteration 
around the carbonatite dykes [34 ]. Given the con- 
siderable carry capacity of carbonatite magma for Nb 
[35 ], the first stage Nb metal could be sourced from
Mesoproterozoic carbonatite magma. 

The ∼0.44 Ga ferrocolumbites coexist with 
minerals typical of hydrothermal metasomatism in 
carbonatite systems [5 ,14 ], such as Sr- and Ba-rich
minerals (norsethite, strontianite, barytocalcite, 
and baryte) and alkaline minerals (biotite and 
riebeckite, Fig. 2 D–F ), hence the second-stage Nb 
mineralization was suggested as hydrothermal in 
origin. Notably, the ∼0.44 Ga ferrocolumbites show 

distinct compositional differences from the ∼1.3 Ga 
ferrocolumbites, with lower TiO2 and MgO con- 
tents, and higher MnO contents (Fig. 3 ). Thus, the
hydrothermal fluids responsible for second-stage 
Nb mineralization likely are richer in Sr, Ba, Mn, and 
alkali compared to that of the ∼1.3 Ga Nb mineral-
ization. The ∼0.44 Ga Nb mineralization is coeval 
with the early Paleozoic hydrothermal veins that cut 
through the orebodies and H8 dolomite [25 ,26 ], 
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excluded from (A) due to their unusually large 207 Pb/206 Pb age uncertainties. (C, D) Tera-Wasserburg plot and weighted average 206 Pb/238 U age of type 
II ferrocolumbite. (E, F) Tera-Wasserburg plot and weighted average 206 Pb/238 U age of type III ferrocolumbite. MSWD denotes mean square of weighted 
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inking it closely to the early Paleozoic hydrothermal
ctivity. These hydrothermal fluids are proposed
o be released from the subducting slab [5 ,36 ] or
riginate from the remelting of Mesoproterozoic
arbonatite induced by heat generated through
aleozoic plate subduction [37 ]. However, ongoing
ebates persist regarding the subduction dynamics,
ith some studies proposing southward subduction
f the Paleo-Asian Oceanic (PAO) plate towards the
orth China Craton (NCC) [38 ], while others sug-
est a northward subduction of South Bainaimiao
cean, a branch of the PAO located to the north
f the NCC [39 ]. Additionally, there is speculation
hat the hydrothermal fluids might originate from
n alkaline-carbonatite suite that does not crop out
n a plutonic scale in the Bayan Obo area [2 ]. These
iffering opinions emphasize the urgent need for
urther research to elucidate the mechanisms of
arly Paleozoic hydrothermal activity and specific
rocesses of Nb enrichment and mineralization. 
The ∼0.27 Ga ferrocolumbites are intergrown

 ith aeschynite w ithin biotite veins which cut
hrough dolomite. They also host inclusions of
iotite, pyrite, and apatite (Fig. 2 G–I), hence are
nterpreted as hydrothermal in origin. The third-
tage Nb mineralization is contemporaneous with
Page 6 of 9
Permian granites [28 ]. The significantly lower Nb 
content (16–19 ppm, [40 ]) of Permian granites 
compared to carbonatite dikes implies a limited 
contribution of Nb resource from the granites. How- 
ever, the similar composition of the ∼0.27 Ga and 
∼1.3 Ga ferrocolumbites (Fig. 3 ), and their close 
proximity in space ( ∼50 m apart; Fig. 1 B) sug-
gest that the ∼0.27 Ga Nb mineralization likely 
resulted from the reactivation of the ∼1.3 Ga Nb 
mineralization, facilitated by the Permian granite in- 
trusion. This highlights the important role of granite 
emplace in the formation of high grade Nb miner- 
alization, which challenges the traditional model 
that the Permian granites do not contribute metal 
endowment at Bayan Obo [41 ]. While the known 
hydrothermal and metamorphic effects of Permian 
granites primarily influence the eastern and south- 
ern sides of the H8 dolomite (e.g. [5 ]), the finding of 
∼0.27 Ga ferrocolumbite in the West orebody 
suggests a more extensive impact. This new finding 
could offer indicative guidance for Nb resource 
exploration and extraction efforts in the Bayan Obo 
deposit. 

Experimental studies suggest that Nb can be 
mobi le in al kalic and F-rich hydrothermal systems 
[42 ]. Moreover, the major mechanisms driving Nb 
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nrichment and mineralization involve fluorination
nd alkaline metasomatism [15 ]. Thus, giving the
ccurrence of alkaline minerals such as biotite and
iebeckite, we emphasize the significance of alkaline
uids in all three stages of Nb mineralization. 

mplications for REE and Fe 

ineralization at Bayan Obo 

revious studies have yielded a wide range of radio-
etric dates using the Sm-Nd and Th-Pb systems for
EE-bearing minerals ( ∼1.4–0.26 Ga, e.g. [9 ]) at
ayan Obo. The large range of Th-Pb dates has been
nterpreted as a continuous and prolonged REE min-
ralization event [10 ], or multiple stages of REE min-
ralization [43 ], or even the modifications of existing
EE mineralization by later thermal-hydrothermal
vents [9 ]. These dates carry considerable uncer-
ainties arising from unaccounted common lead and
otential open system behaviors, which are diffi-
ult to evaluate by Th-Pb dating using LA-ICP-MS.
ombined with detailed petrographic observation
nd the robust U-Pb system, our study overcame the
forementioned challenges and established a three-
tage model for Nb mineralization. Given the close
patial association between REE and Nb minerals
Fig. 2 ), it is possible that REE mineralization may
ave also formed through multistage processes [43 ].

ETHODS 

epresentative thin sections of all samples were
oated with carbon for backscattered electron (BSE)
maging by TESCAN integrated mineral analyzer
TIMA) and major element analysis by electron
robe microanalyzer (EPMA). After that, suitable
egions ∼5 mm in diameter were dri l led out us-
ng a micro-dri l l. The dri l led chips as well as
he corresponding ferrocolumbite standards were
ounted in epoxy mounts for SIMS U-Pb dating.
etailed methods of TIMA mineral mapping and
PMA major element analysis are presented in the
upplementary Data. 

IMS ferrocolumbite U-Pb dating 

he SIMS U-Pb analyses were performed using
 Cameca IMS-1280HR SIMS at the Institute of
eology and Geophysics, Chinese Academy of
ciences (IGGCAS). The analytical procedure for
errocolumbite mineral dating is similar to that de-
eloped by [18 ], only a brief summary is described
ere. The O2 − primary ion beam was accelerated at
13 kV, with an intensity of ∼6 nA. The ellipsoidal
pot is about 10 × 15 μm in size. The 93 Nb2 16 O+ 
Page 7 of 9
peak is used as a reference peak for centering the
secondary ion beam, energy, and mass adjustments. 
A mass resolution of ∼13 0 0 0 (defined at 50% peak
height) was used to separate isobaric interferences 
on the 204 Pb isotope. A single electron multiplier was 
used in ion-counting mode to measure secondary- 
ion beam intensities by a peak jumping sequence, 
including isotopes of 93 Nb2 16 O+ , Pb+ , Th+ , U+ , 
UO+ , and 238 U16 O2 + . Each measurement consisted 
of 7 cycles, and the total analysis time of a single
spot was ∼16 minutes. 

To estimate the Pb/U ages of the ferrocolumbite 
samples in the absence of a matrix-matched standard, 
the matrix-effect correction strategy recommended 
by [18 ] was applied. First, two columbite-tantalite 
reference materials (NP-02 and ZTA01) of variable 
Nb/Ta chemical composition have been used as 
standards. The recommended ages of NP-02 and 
ZTA01 are 380.3 ± 2.4 Ma [18 ] and 264 Ma [44 ],
respectively. 206 Pb/238 U calibration was done based 
on the linear relationship between 238 U16 O+ /238 U+ 

and 206 Pb+ /238 U+ ratios. Then, the Nb/Ta chemi- 
cal composition of the ferrocolumbite samples and 
the standards were measured by EPMA. Based on 
the linear correlation between Nb/Ta chemical com- 
position and SIMS age bias, the SIMS matrix-effect 
can be properly corrected. A long-term uncertainty 
of 1.5% (1 RSD) for 206 Pb/238 U measurements was 
propagated to the unknowns. 

According to formulas ( 1 –3 ) [32 ], the measured
U-Pb isotopic compositions were corrected for com- 
mon lead using non-radiogenic 204 Pb for type Ⅰ 
ferrocolumbites (sample BK59F-5–7, BK59F-5–8, 
BK59F-5–15, and BK59F-5–17), employing the ter- 
restrial lead isotope model [45 ]. A Tera-Wasserburg 
plot [46 ] was constructed with common lead uncor-
rected data to deduce the common lead composition 
for type Ⅱ and Ⅲ ferrocolumbites (sample EB21- 
PM and BK59F-4–11). Then, a 207 Pb-based com- 
mon lead correction method was conducted for a 
single analysis of type Ⅱ and Ⅲ ferrocolumbites. 

206 =
(
206 P b/204 P b 

)
common 

( 206 P b/204 P b ) measured 
, (1) 

06 Pb∗
238 U 

=
206 Pbmeasured 

238 U 

× ( 1 − f206 ) , (2) 

207 Pb∗
206 Pb∗ = 

(
207 P b/206 P b 

)
measured − (

207 P b/206 P b 
)
common × f206 

1 − f206 
.

(3)

Data reduction was carried out using the Iso- 
plotR program [47 ]. Uncertainties on individual 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae063#supplementary-data


Natl Sci Rev, 2024, Vol. 11, nwae063

a  

T  

d
 

U  

c  

t  

o  

d  

w  

t  

c  

2
 

r  

t  

c  

c

S
S

A
W  

f  

m  

i

F
T  

d  

S  

t  

(

A
Y  

s  

t  

a  

m  

P  

a  

G  

s  

m

C

R

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/11/4/nw

ae063/7612977 by pekin university user on 26 April 2024
nalyses in data tables are reported at the 1 σ level.
he final U-Pb age result is quoted with a 95% confi-
ence interval. 
To monitor the precision and accuracy of SIMS

-Pb ferrocolumbite in this study, two in-house
olumbite standards LCT01 and LCT02 were al-
ernately analyzed as an unknown together with
ther unknown columbite samples. The indepen-
ent 207 Pb/206 Pb ages of LCT01 and LCT02 are
eighted at 1802 ± 5 Ma and 919 ± 4 Ma, respec-
ively. With the above-mentioned calibration pro-
edure, LCT01 and LCT02 yield weighted average
06 Pb/238 U ages of 1808 ± 19 Ma and 918 ± 6 Ma,
espectively, which are identical within error with
heir values (see Set S2). The results of in-house
olumbite standards indicate that our SIMS U-Pb
olumbite dating method is accurate. 

UPPLEMENTARY DATA 

upplementary data are available at NSR online. 
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